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Regular nets are de®ned as those with symmetry that requires the coordination

®gure to be a regular polygon or polyhedron. It is shown that this de®nition

leads to ®ve regular 3-periodic nets. There is also one quasiregular net with a

quasiregular coordination ®gure. The natural tiling of a net and its associated

essential rings are also de®ned, and it is shown that the natural tilings of the

regular nets have the property that there is just one kind of vertex, one kind of

edge, one kind of ring and one kind of tile, i.e. transitivity 1111. The quasiregular

net has two kinds of natural tile and transitivity 1112.

1. Introduction

There is considerable interest in the basic nets underlying the

topology of periodic structures such as those of crystals and

considerable effort has been devoted to their enumeration

(e.g. Barrer & Villiger, 1969; Wells, 1977, 1979; Chung et al.,

1985; Smith, 1988; Akporiaye & Price, 1989; O'Keeffe, 1991,

1992, 1995; O'Keeffe & Brese, 1992; Andries & Smith, 1994;

Han & Smith, 1994, 1999a,b; Treacy et al., 1997; Delgado

Friedrichs et al., 1999; Delgado Friedrichs & Huson, 2000).

Recently, we have argued (O'Keeffe et al., 2000) that the most

important of these, and the most plausible targets for designed

synthesis, are the ones that have `simple, high-symmetry'

structures. In this paper, we quantify this concept by ®rst

identifying ®ve regular 3-periodic structures, and then show

how the consideration of nets as based on tilings leads to

natural quanti®cation of `regularity'. We note that there is no

general agreement even on the de®nition of the term `net', and

it is not always clear if reference is to a graph, or to its

embedding in Euclidean space in which coordinates are

assigned to vertices. Our treatment is informal and we defer a

more rigorous mathematical treatment of some statements to

a later publication.

The ®ve regular (Platonic) polyhedra and their geometric

properties have been known for millennia (Euclid of Alex-

andria, ca 300 B.C.). These structures can be considered as

tilings of a closed surface, topologically equivalent to the

surface of a sphere, by congruent regular polygons such that

there is just one kind of vertex, edge and face (i.e. vertices etc.

related by operations of a symmetry group). The corre-

sponding tilings of the plane (two-dimensional Euclidean

space) were described some hundreds of years ago by Kepler

(1619). The three regular tilings of the plane are by triangles,

squares and hexagons, respectively.

If one adopts the de®nition of regularity in three dimen-

sions that the tiles be regular polyhedra and that there is just

one kind of vertex, face, edge and tile, the tiling of the

3-sphere leads to the six regular four-dimensional polytopes

(Coxeter, 1973). However, the only regular tiling of three-

dimensional Euclidean space, according to this de®nition, is

the familiar tiling by cubes. Coxeter (1973) refers to this lack

of riches as `an unfortunate accident', however, we believe

rather that it is the result of a too-stringent de®nition of

regularity that places emphasis on the tile rather than on the

net of vertices and edges carried by the tiling (its 1-skeleton).

Accordingly, we propose a de®nition of regularity that focuses

exclusively on the net and leads to the recognition of ®ve

regular nets; only after we have identi®ed regular nets do we

examine the tilings that carry them. We ®nd that the tilings

associated with nets also lead to a second de®nition of regu-

larity that is in accord with the ®rst.

The structures we describe here are all well known (see e.g.

O'Keeffe & Hyde, 1996). What is new is the recognition of

regularity and the development of a hierarchical description of

nets based in part on the concept of natural tilings. We will

use this in subsequent papers to give a uniform treatment of

the more-regular 3-periodic structures. We also propose a

nomenclature (lower-case three-letter symbol) for these

structures, as some have many names and symbols ± for

example our ®rst structure is variously known as `net (10,3)-a'

(Wells, 1977), `Laves net' (Pearce, 1978), `Y*' (Fischer & Koch,

1983), `3/10/c1' (Koch & Fischer, 1995), `SrSi2 net' (O'Keeffe

et al., 2000), `labyrinth graph of the gyroid surface' (Hyde &

Ramsden, 2000) ± other structures have no names (that we are

aware of) at all. The nomenclature is designed to parallel the

widely accepted upper-case three-letter symbols used for

zeolite frameworks (Baerlocher et al., 2001).

Most of the nets we consider can be realized as imbeddings

in which edges are all of equal length and correspond to

shortest intervertex distances. Such structures are called
² Present address: Department of Computer Science, University of TuÈ bingen,
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sphere packings and systematic enumerations of many of them

have been given (Fischer, 1973, 1974, 1991a,b, 1993; Koch &

Fischer, 1995).

2. Regular nets

We consider only three-periodic nets with one kind of vertex

(vertex transitive) and speci®cally refer to maximum-

symmetry embeddings of the net. The coordination ®gure is

de®ned by the convex hull of the neighbors of a vertex in this

embedding, and we require this ®gure to be a regular polygon

or polyhedron. We further require the vertex to have site

symmetry in the net that is at least the rotation symmetry of

that regular polygon or polyhedron. Note that we consider

polygons to have a three-dimensional symmetry so that they

must have at least the symmetry of the appropriate dihedral

group (32 for a triangle, 422 for a square etc.). The symmetry

requirement also means that the resulting structure has to

correspond to an invariant lattice complex (atom coordinates

®xed), and as these are well known (Fischer & Koch, 1983) we

have an independent check of our enumeration.

Taking into account the fact that the possible site symme-

tries must be a crystallographic point group, we can immedi-

ately state that the only possible coordination ®gures for a

regular net are: (a) equilateral triangle, (b) square, (c) regular

plane hexagon, (d) regular tetrahedron, (e) regular octahe-

dron, ( f) cube. We consider each case in turn.

(a) Equilateral triangle. With a threefold symmetry axis, the

possibilities are either uniaxial symmetry, which can only

result in a plane net with all coordination ®gures coplanar

(which we reject as we are concerned only with three-periodic

structures), or a cubic structure. Consider in the latter case one

vertex, A, and its three neighboring vertices, B, C, D. The

vertex ®gures associated with B, C, D must be inclined at a

dihedral angle equal to that of A by the angle between cubic

threefold axes, i.e. �cosÿ1(ÿ1/3) = �109.5� as shown in Fig. 1.

Note that the two possibilities are chiral. As B, C and D are on

threefold axes, the orientation of the coordination ®gures of

their neighbors (in each case A and two others) are deter-

mined, and it should be clear that only two enantiomorphic

structures are possible.

The structures we have described are

well known as the enantiomorphic pair

of invariant lattice complexes +Y* and
ÿY*. We mention also that all vertex-

transitive 3-coordinated sphere packings

are known (Koch & Fischer, 1995) and

the Y* lattice complex is the only one

with site symmetry (32) that includes a

threefold axis. This net is found as the Si

net of SrSi2 and for this reason we

propose to use the name srs for this net.

(b) Square. As in case (a), one can

have either a layer structure or a cubic

structure and we consider only the latter.

The vertices must be on fourfold axes

and the coordination ®gures of neighbors must be at 90� to the

coordination ®gure of any given vertex. Fig. 3 shows that there

is only one possibility and the resulting net is again familiar as

the net of NbO or the lattice complex J*. Our proposed name

for this structure is nbo.

(c) Hexagon. Site symmetry with a sixfold axis as required

for a regular plane hexagon is only possible for a planar

structure, so we conclude that there is no regular 3-periodic

structure with a hexagonal coordination ®gure. We note that

there is a cubic structure with a regular hexagonal coordina-

tion ®gure. However, the site symmetry is �3m and we prefer to

consider this net as one of the larger class of semiregular nets

discussed in the next paper in this series.

(d) Tetrahedron. The minimum symmetry for a regular

tetrahedral coordination ®gure is 23, so a regular tetrahedral

structure must be cubic. Edges must be on threefold axes and

therefore can only assume four distinct spatial directions.

From this it is easy to see that neighboring vertices and the

positions of their neighbors are ®xed and must produce a

unique structure which is in fact the familiar diamond struc-

ture, lattice complex D. We propose the name dia.

There are other invariant lattice complexes (V, S*, Q, W*)

with tetrahedral coordination, but it may quickly be veri®ed

that none other than D has regular tetrahedral coordination.

(e) Octahedron. It is trivial to show that in this case the net

of the primitive cubic lattice (symbol cP) is the only one with

regular octahedral coordination. The proposed name is pcu.

(f) Cube. Likewise it is trivial to show that the net of the

body-centered cubic lattice (symbol cI) is the only one with

coordination ®gures that are regular cubes. We propose the

name bcu for this net.
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Figure 1
The two ways of propagating a three-dimensional 3-coordinated net with
threefold symmetry at each vertex

Table 1
Data for regular and quasiregular nets.

lc = lattice complex, ps = point symmetry, sg = space group, trans = transitivity. The last two rows are data
for the ¯uorite (¯u) structure.

Z Coord. ®gure lc Name ps sg xyz Tiles trans

3 Triangle Y* srs 32 I4132 1/8,1/8,1/8 [103] 1111
4 Square J* nbo 4/mmm Im�3m 0,1/2,1/2 [68] 1111
4 Tetrahedron D dia �43m Fd�3m 1/8,1/8,1/8 [64] 1111
6 Octahedron cP pcu m�3m Pm�3m 0,0,0 [46] 1111
8 Cube cI bcu m�3m Im�3m 0,0,0 [44] 1111

12 Cuboctahedron cF fcu m�3m Fm�3m 0,0,0 [38]+2[34] 1112

8 Cube ¯u m�3m Fm�3m 0,0,0 [412] 2111
4 Tetrahedron �43m 1/4,1/4,1/4
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Various aspects of the regular nets are shown in Figs. 2±6. In

the drawings of the nets, we actually show the augmented net

(O'Keeffe et al., 2000) in which the vertices are replaced by a

group of vertices having the conformation of the coordination

®gure. Table 1 summarizes some important properties of these

structures.

3. Quasiregular nets

A quasiregular polyhedron is one in which all vertices and all

edges are related by symmetry but which has two kinds of face.

It is well known (Coxeter, 1973) that the only two possibilities

are the cuboctahedron (3.4.3.4) with symmetry m�3m and the

icosidodecahedron (3.5.3.5) with symmetry m�3�5. A quasi-

regular net is de®ned as one in which the coordination ®gure is

a quasiregular polyhedron. Clearly the cuboctahedron is the

only possibility for a periodic structure and it is trivial to show

that the only such net is that of the face-centered cubic lattice

(symbol cF), proposed name fcu. This assignment is in

accord with the identi®cation by Coxeter (1973) of the face-

centered cubic lattice as the only quasiregular tiling; i.e. one

that has one kind of vertex, edge and face, but two tiles that

are regular polyhedra (tetrahedra and octahedra). The

quasiregular net is illustrated in the same way as the regular

nets in Fig. 7.

4. Natural tilings, transitivity and duals

The description of nets in terms of the tilings that carry them is

a powerful tool for the systematic enumeration of structures

(Delgado Friedrichs et al., 1999; O'Keeffe, 1999). We believe

that it is also very useful for the systemization of properties of

nets. For a given net, there are many tilings that carry that net;

however, there is a natural tiling that we believe to be unique

and which we now describe after some necessary de®nitions.

Firstly, we note that every net has a combinatorial symmetry

which is the maximum symmetry possible for that net, and that

usually an embedding as a sphere packing can be realized with

that symmetry. There are exceptions to the possibility of

realization as maximum-symmetry embeddings, which we

consider elsewhere, but they will not concern us here.

Secondly, we note that a tile will have faces that are cycles of

Figure 3
Left: the augmented NbO (nbo) net. Center: the tiling. Right: the
skeleton of one tile (red) with a fragment of the dual net (blue).

Figure 4
Left: the augmented diamond (dia) net. Center: the tiling. Right: the
skeleton of one tile (red) with a fragment of the dual net (blue).

Figure 5
Left: the augmented primitive cubic lattice net (pcu). Center: the tiling.
Right: the skeleton of one tile (red) with a fragment of the dual net
(blue).

Figure 6
Left: the augmented body-centered cubic lattice net (bcu). Center: the
tiling. Right: the skeleton of one tile (red) with a fragment of the dual nbo
net (blue).

Figure 7
Left: the augmented face-centered cubic lattice net (fcu). Right: the tiling.

Figure 2
Left: the augmented Y*(srs) net. Center; the tiling. Right: the skeleton of
one tile (red) with a fragment of the dual net (blue).



the net. If we de®ne a cycle sum of two cycles with one or more

common edges in the usual way (Corey & Petersson, 1972) as

the set of edges not common to both cycles, then a ring may be

de®ned as a cycle that is not the sum of two smaller cycles. A

strong ring is de®ned (Goetzke & Klein, 1991) as one that is

not the sum of any number of smaller cycles (or, equivalently,

smaller rings).

We now de®ne a natural tiling as one that has the smallest

possible tiles such that (i) the tiling has the maximum

(combinatorial) symmetry and (ii) all the faces of the tiles are

strong rings. There may be exceptional cases in which there is

no natural tiling as de®ned above, or in which there is more

than one natural tiling; again such instances do not concern us

here. Indeed, in all the cases we consider, the natural tiling is

readily apparent and unique.

We remark that the natural tiles are the natural cages (or

holes) in the structure and their faces are the essential rings in

the structure. There may be strong rings that are not faces of

tiles; we give an example below (cf. Fig. 8).

The tiles themselves are generalized polyhedra (cages) in

which there may be vertices at which only two edges meet.

They are conveniently described by face symbols [Mm.Nn . . . ],

which indicate that there are m faces that are M-rings, n faces

that are N-rings etc. Notice the Euler equation relating the

numbers of vertices V, edges E and faces F, i.e. F ÿ E + V = 2

holds for cages.

In a tiling, speci®cally here a natural tiling, there will in

general be p kinds of vertex, q kinds of edge, r kinds of ring

and s kinds of tile. The transitivity (Delgado Friedrichs &

Huson, 2000) is de®ned as the array pqrs.

The dual of a tiling is derived by placing a new vertex inside

each tile and connecting pairs of new vertices that are in

adjacent tiles by a new edge through the face common to the

two tiles. Faces of the dual tiling are chosen in such a way that

the dual of the dual is the original tiling; thus the dual tiling

may not be the natural tiling of the net it carries (this

complication does not arise in the cases we consider here). The

transitivity of the dual of a tiling with transitivity pqrs is srqp.

If a net has a unique natural tiling then the dual net is the net

carried by the dual of that tiling. Intergrowth of a net and its

dual in the case that both tilings are natural is of special

interest; then all the edges of one net penetrate essential rings

of the other, and all essential rings of one net are penetrated

by edges of the other. In other words, all rings of one net are

catenated with rings of the other net and we say that the nets

are fully catenated.

Each edge of a net passes through a face of the dual tiling. If

that face is an N-ring, N of the original tiles meet at that edge.

Similarly, each vertex is in the center of a dual tile; if that tile

has M vertices, M of the original tiles meet at that vertex. The

total number of edges of a dual tile is equal to the number of

rings in the original net meeting at the vertex associated with

that dual tile.

5. Natural tilings, transitivity and duals of regular and
quasiregular nets

Natural tiles for the regular nets are shown in Figs. 2±6. In

each case there is just one kind of tile with one kind of face so

in each case the transitivity is 1111. These are the only natural

tilings we know of with transitivity 1111, and it is pleasing that

the regular nets correspond to the smallest possible transitivity

(i.e. the array of smallest possible numbers for each of p, q, r,

s). However, we remark that we know of no proof that there

are not other natural tilings with the same transitivity.

The tile for the srs net (Fig. 2) is a trihedron [103] with 3

faces, 15 edges and 14 vertices and with symmetry 32. The dual

structure is the enantiomorph of the original net. In the

symbolism of lattice complexes, +Y* and ÿY* are a dual pair.

The 10-rings are the only rings in the structure and they are all

essential rings.

The tiles for the nbo net (Fig. 3) are octahedra [68] with 18

vertices and 24 edges and with symmetry m�3m. Each tile has

three 8-rings around a midsection but these are not strong
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Figure 8
Skeletons of tiles for the bcu net. Left: a face ring (an essential 4-ring) is
shown in blue. Right: an inessential 4-ring (not a face ring) is shown in
red.

Figure 10
Left: the augmented ¯uorite net. Right: the tiling.

Figure 9
A tiling (not natural) for fcu that has one kind of vertex, one kind of edge,
one kind of face and one kind of tile. Note that pairs of tiles have at most
one face in common. The symmetry is Pa�3.
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rings as any one is the ring sum of four 6-rings. The dual is the

8-coordinated bcu structure.

The tiles for the dia net (Fig. 4) are tetrahedra [64] with 10

vertices and 12 edges and with symmetry �43m. The structure is

self-dual.

The tiles for the pcu net (Fig. 5) are cubes [46] with 8

vertices and 12 edges and with symmetry m�3m. The structure is

self-dual.

The tiles for the bcu net (Fig. 6) are tetrahedra [44] with 6

vertices and 8 edges and with symmetry 4=mmm. Each tile has

two 4-rings around a midsection (Fig. 8). These are strong

rings as there are no smaller rings (all the rings in the structure

are 4-rings), but as they are not face rings they are not essential

rings. It should be apparent from the ®gure that they could not

serve as faces of tiles without breaking the symmetry, so they

cannot serve as faces of natural tiles. The dual of bcu is the

4-coordinated nbo structure.

For the quasiregular net (fcu, Fig. 7), there are two kinds of

tile (s = 2), namely a regular tetrahedron and a regular octa-

hedron, but only one kind of face which is common to a

tetrahedron and an octahedron. Accordingly, the transitivity is

1112. Again, we know of no other natural tiling with this

transitivity and no proof that there are not others.

The quasiregular net allows an illustration of a tiling

(GruÈ nbaum & Shephard, 1980) that is not a natural tiling, with

transitivity 1111. The tiles are obtained by gluing tetrahedra to

two opposite faces of an octahedron and ®tting these tiles

together in a way (Fig. 9) that only one face is shared between

a given pair of tiles. The symmetry of the tiling, Pa�3, is less

than the maximum symmetry of the net, Fm_3m, and the tiles

are not the smallest possible with faces that are strong rings, so

the tiling is not natural. Notice that if we dissect the octahedra

of the fcu net into two square pyramids we will again lose

some symmetry and the square faces of the pyramids are not

strong rings (they are the sums of the four triangular faces of

the pyramids) so that tiling by tetrahedra and square pyramids

would not be a natural tiling either.

The dual of the fcu net (transitivity 1112) must have two

kinds of vertex and transitivity 2111. It is in fact the net of the

¯uorite (CaF2) structure for which our name is ¯u. Aspects of

this structure are illustrated in Fig. 10 and some data are

included in Table 1. Just as we believe that fcu is the only

structure with transitivity 1112, so we believe that ¯u is the

only one with transitivity 2111. In this sense, the latter is the

most regular binary structure. The tiling by rhombic dodeca-

hedra is, of course, of great importance in many areas of solid-

state physics and chemistry.

It is interesting that the property of self-duality is relatively

uncommon among nets, yet it occurs in what are probably the

most common nets observed (O'Keeffe et al., 2000) in crystal

chemistry, i.e. the srs, dia and pcu nets, which are the most

regular nets for triangular, tetrahedral and octahedral coor-

dination. It is not surprising therefore to ®nd two (or occa-

sionally more) such nets intergrown when the basic net has

low density (e.g. because of the presence of long links) and the

occurrence of such pairs of intergrown nets is rather common

(Batten & Robson, 1998).

6. Concluding remarks

Our goal in this paper is to establish a basis for a systematic

description of 3-periodic nets. We use an approach based on

the concept of natural tilings to establish a transitivity pqrs. In

this paper, we have described the structures 111s (note that s is

necessarily equal to either 1 or 2). The next most regular

structures have transitivity 11rs. These are also relatively few

and generally important in crystal chemistry (an example is

the net of the sodalite structure); we propose to call these

`semiregular' and to discuss them in the next paper of this

series. We note that these semiregular structures have earlier

been termed `homogeneous' (Pearce, 1978) or `quasiregular'

(O'Keeffe & Hyde, 1996).

Although we use tilings to assist in the description and

classi®cation of the nets, our main focus is on the regularity of

coordination around the vertices. This is re¯ected in the order

of symbols in the transitivity (vertices ®rst, tiles last). If we

were to focus on the tilings, a useful approach, which allows

systematic enumeration, is through the use of Delaney

symbols (Dress, 1985; Delgado Friedrichs et al., 1999). In this

method, the tiles are divided into tetrahedral chambers with

vertices at the center of the tile, the center of a face, the center

of an edge and a vertex. The tiles in the tiling may be classi®ed

by the number of different chambers. The only tiling with just

one kind of chamber is the tiling by cubes to produce the

primitive cubic lattice; this is in accord with its identi®cation

with the only regular tiling. The tilings with nets that we have

here called nbo, dia, bcu, fcu, ¯u are the only ones with just

two kinds of chamber (Delgado Friedrichs, 1994). The only

other structure we have described here, the regular 3-coordi-

nated srs net, has a tiling with ten distinct chambers empha-

sizing that in classifying nets we should attach little weight to

the symmetry of the tiles that form the natural tiling, and

instead focus, as done here, on the vertices and their

surroundings.

We remark that the tilings illustrated in this paper all appear

in the remarkable, but insuf®ciently well known, book by

Pearce (1978).
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